
PG_DUCKDB:

DUCKING AWESOME

ANALYTICS IN POSTGRES

Jelte Fennema-Nio (@JelteF)

2025-09-30

What is pg_duckdb?

pg_duckdb is a Postgres extension that

embeds DuckDB inside Postgres

Ehhhmm what???

● Open source

● Many contributors

● Very stable

● Lots of built in functionality and extensible

Postgres is an amazing database

Great at transactional workloads (OLTP)

But not at analytics… (OLAP)

DuckDB to the rescue

What is DuckDB?

Lightweight in-process SQL Analytics Engine

DuckDB is a new category of database

In-Process

Client-Server

Transactional Analytical

DuckDB is a new category of database

In-Process

Client-Server

Transactional Analytical

created at:

created by:

maintained by:
Community

& Foundation

And it’s very popular

And it’s very popular

Swiss army-knife for data

Input and output formats

JSON

Parquet

CSV

.duckdbIceberg

Data sources and destinations

s3://

gcs://

PostgreSQL

SQLite

http(s)://

MySQL

.duckdb
azure://

World’s best CSV parser

● An absurd amount of the world runs on CSV files
● An absurd amount of the world has broken /

wonky CSV files
● An absurd amount of data engineering time is

spent dealing with CSV file peculiarities
● Wouldnʼt it be nice if they just … worked?

And it's fast!

And it's fast!

Now, we have two great databases

● Postgres for transactional workloads

● DuckDB for analytical workloads

A small recap

DuckDB is a new category of database

In-Process

Client-Server

Transactional Analytical

PG Analytics with DuckDB

In-Process

Client-Server

Transactional Analytical

PG Analytics with DuckDB

In-Process

Client-Server

Transactional Analytical

What does that look like?

What does that look like?

What does that look like?

Ducks & Elephants

are different species

1989 vs 2019

C vs C++

elog(ERROR, …) vs exceptions

processes vs threads

So we did lots of work

Now this is where we're at

How does pg_duckdb work?

Executor

Executes the plan

Parser

Transforms the SQL query
string to syntax tree

Planner

Determines the most
efficient way to execute it

Simplified query processing in Postgres

pg_duckdb “steals” the query

PG Executor

Executes the plan

PG Parser

Transforms the SQL query
string to syntax tree

PG Planner

Determines the most efficient
way to execute it

DuckDB ExecutorDuckDB Planner

Hook

pg_duckdb

DuckDB Parser

pg_duckdb can read PG data

What can it do?

What can it do?

1. Use DuckDB engine

on Postgres tables

What can it do?

1. Use DuckDB engine

on Postgres tables

2. Read/write data in

blob storage

What can it do?

1. Use DuckDB engine

on Postgres tables

2. Read/write data in

blob storage

3. Offload analytics

to MotherDuck

DuckDB engine on Postgres tables

DuckDB engine on Postgres tables

Very simple:

SET duckdb.force_execution = true;

But is it fast???

It depends…

But sometimes yes!

ClickBench results

One extreme example

One extreme example

1. Set up TPC-DS with 10GB and no indexes

One extreme example

1. Set up TPC-DS with 10GB and no indexes

2. Run Q1 -> ⌛⌛⌛ wait 10 minutes and give up

One extreme example

1. Set up TPC-DS with 10GB and no indexes

2. Run Q1 -> ⌛⌛⌛ wait 10 minutes and give up

3. SET duckdb.force_execution = true;

One extreme example

1. Set up TPC-DS with 10GB and no indexes

2. Run Q1 -> ⌛⌛⌛ wait 10 minutes and give up

3. SET duckdb.force_execution = true;

4. Run Q1 -> done in 450ms!

One extreme example

1. Set up TPC-DS with 10GB and no indexes

2. Run Q1 -> ⌛⌛⌛ wait 10 minutes and give up

3. SET duckdb.force_execution = true;

4. Run Q1 -> done in 450ms!

5. Easiest query optimization ever 🎉

But how?

Morsel-Driven Parallelism

Source: https://db.in.tum.de/~leis/papers/morsels.pdf

https://db.in.tum.de/~leis/papers/morsels.pdf

Morsel-Driven Parallelism

Execution on compressed data

Flat Constant SequenceDictionary

Source: https://duckdb.org/docs/stable/internals/vector

https://duckdb.org/docs/stable/internals/vector

Read from blob storage

SELECT *
FROM read_parquet('s3//<my-bucket>/netflix_daily_top_10.parquet')
LIMIT 5;

Read from blob storage

SELECT r['Title'], max(r['Days In Top 10'])::int as MaxDaysInTop10
FROM read_parquet('s3//<my-bucket>/netflix_daily_top_10.parquet') r
WHERE r['Type'] = 'TV Show'
GROUP BY r['Title']
ORDER BY MaxDaysInTop10 DESC
LIMIT 5;

Read from blob storage

SELECT r['Title'], max(r['Days In Top 10'])::int as MaxDaysInTop10
FROM read_parquet('s3//<my-bucket>/netflix_daily_top_10.parquet') r
WHERE r['Type'] = 'TV Show'
GROUP BY r['Title']
ORDER BY MaxDaysInTop10 DESC
LIMIT 5;

What it looks like in DuckDB

SELECT Title, max("Days In Top 10")::int as MaxDaysInTop10
FROM 's3//<my-bucket>/netflix_daily_top_10.parquet'
WHERE Type = 'TV Show'
GROUP BY Title
ORDER BY MaxDaysInTop10 DESC
LIMIT 5;

What it looks like in DuckDB

SELECT Title, max("Days In Top 10")::int as MaxDaysInTop10
FROM 's3//<my-bucket>/netflix_daily_top_10.parquet'
WHERE Type = 'TV Show'
GROUP BY Title
ORDER BY MaxDaysInTop10 DESC
LIMIT 5;

Read from blob storage

SELECT r['Title'], max(r['Days In Top 10'])::int as MaxDaysInTop10
FROM read_parquet('s3//<my-bucket>/netflix_daily_top_10.parquet') r
WHERE r['Type'] = 'TV Show'
GROUP BY r['Title']
ORDER BY MaxDaysInTop10 DESC
LIMIT 5;

Making Postgres behave like DuckDB

SELECT Title, max("Days In Top 10")::int as MaxDaysInTop10
FROM 's3//<my-bucket>/netflix_daily_top_10.parquet'
WHERE Type = 'TV Show'
GROUP BY Title
ORDER BY MaxDaysInTop10 DESC
LIMIT 5;

Making Postgres behave like DuckDB

SELECT * FROM duckdb.query$$
SELECT Title, max("Days In Top 10")::int as MaxDaysInTop10
FROM 's3//<my-bucket>/netflix_daily_top_10.parquet'
WHERE Type = 'TV Show'
GROUP BY Title
ORDER BY MaxDaysInTop10 DESC
LIMIT 5
$$;

Making Postgres behave like DuckDB

SELECT * FROM duckdb.query$$
FROM 's3//<my-bucket>/netflix_daily_top_10.parquet'
LIMIT 5
$$;

A few words about resources

PostgreSQL
TQ TQ TQ TQ TQ

TQ TQ TQ TQ TQ

TQ TQ TQ TQ TQ

Lite transactional queries

A few words about resources

Analytics

PostgreSQL

AQ AQ

PostgreSQL

A few words about resources

MotherDuck on-demand resources

MD AQ
MD AQ MD AQ

MD AQ
AQ AQ AQ AQ

TQ TQ TQ TQ TQ

Copy data to MotherDuck

CREATE TABLE hacker_news_motherduck_archive
USING duckdb AS
SELECT * FROM hacker_news;

Query it like normal

SELECT
 EXTRACTYEAR FROM timestamp) AS year,
 EXTRACTMONTH FROM timestamp) AS month,
 COUNT AS keyword_mentions
FROM hacker_news_motherduck_archive
WHERE
 (title LIKE '%duckdb%' OR text LIKE '%duckdb%')
GROUP BY year, month
ORDER BY year ASC, month ASC;

Combine with PG data

SELECT
 EXTRACTYEAR FROM timestamp) AS year,
 EXTRACTMONTH FROM timestamp) AS month,
 COUNT AS keyword_mentions
FROM (
 SELECT * FROM hacker_news_last_month UNION ALL
 SELECT * FROM hacker_news_motherduck_archive)
WHERE
 (title LIKE '%duckdb%' OR text LIKE '%duckdb%')
GROUP BY year, month
ORDER BY year ASC, month ASC;

But is it fast???

For analytics: YES!

Again… But how?

For analytics: YES!

Postgres storage format

Row-based (tuples)

Optimized for:
* low memory footprint
* transactional workloads

DuckDB storage format

Source: https://duckdb.org/2022/10/28/lightweight-compression.html

https://duckdb.org/2022/10/28/lightweight-compression.html

… with lightweight compression

Constant vectors

Source: https://duckdb.org/2022/10/28/lightweight-compression.html

https://duckdb.org/2022/10/28/lightweight-compression.html

Run-Length Encoding (RLE)

Source: https://duckdb.org/2022/10/28/lightweight-compression.html

https://duckdb.org/2022/10/28/lightweight-compression.html

Dictionary Encoding

Source: https://duckdb.org/2022/10/28/lightweight-compression.html

https://duckdb.org/2022/10/28/lightweight-compression.html

Fast Static Symbol Table

Source: https://duckdb.org/2022/10/28/lightweight-compression.html

https://duckdb.org/2022/10/28/lightweight-compression.html

To re-iterate

1. Use DuckDB engine

to speed up

existing queries

2. Blob storage

integration

3. Offload analytics

to MotherDuck for

even more speed

And version 1.0 is out!!! 🎉🎉🎉

Please try it

● MIT licensed

● github.com/duckdb/pg_duckdb

● motherduck.com/blog/pg-duckdb-release

● Feedback welcome

http://github.com/duckdb/pg_duckdb
http://motherduck.com/blog/pg-duckdb-release

